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Abstract. Failure simulation for the flat structure assembled of the degenerated 
shell elements and referred as unidirectional composite is considered in this pa-
per. Master-Slave and penalty methods are implemented in order to describe 
connections between elements. The results are compared for 2D simulation by 
both methods if structure is loaded in longitudinal and transverse directions.  
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1 Introduction 

Finite element method has been used for linear elasticity problems since the origins of 
the finite element analysis. Nowadays it is also applied for non-linear elasticity prob-
lems and failure simulation.  

The principal problems of nonlinear shell analysis are damage simulation and de-
lamination. A zero-thickness rigid bar connecting master and slave nodes which be-
long to different layers of the shell is used in [7] to simulate delamination. Similar 
approach is used to simulate damage evolution in this article.  

The general theory of element failure criteria is described in [10]. Failure criteria 
used for fiber reinforced unidirectional composites are summarized in [5]. Failure 
criteria varies from simple forms such as maximum stress (element fails if stress in 
the principal material direction reaches critical value), maximum strain (element fails 
if strain reaches critical value) to more complex criteria such as Tsai-Wu or Hashin-
Rotem. Same criteria can be used to simulate failure of the layer and delamination 
between layers. One of the most popular criteria used in simulation is the Hashin cri-
teria used in this paper. This criteria is used in [9] to predict damage evolution proper-
ties and failure strengths of composite laminates. The same criteria is also used in [11] 
to predict layer failure with additional component for delamination of the layers. 

Two methods used for connecting shell elements are compared in this work. Flat 
structure is divided to degenerated shell elements. Each element has 4 individual 
nodes. The elements are connected by fictitious bar elements. In this work, we use 
two different methods to constrain connections between elements. Master/Slave and 
penalty methods are implemented and results for longitudinal and transverse loads are 
compared. The orthotropic material corresponding unidirectional fiber reinforced 
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composite in mezzo scale is used in simulation. Total Lagrangian formulation is em-
ployed in dynamic analysis where all variables are referred to the initial configuration 
of the finite element model.  

2 Explicit Solution 

The global system of discretized equations of motion at the nth time step is given  
by [9]: 

 nnnn RuKuCuM =⋅++   (1) 

Where M  is the mass matrix, the damping matrix MC α= , α  – damping con-
stant, K is the tangential stiffness matrix, nu  is the displacement vector at the mo-

ment after n time steps, nR  is a vector of the external forces. In the nonlinear explicit 

analysis component nuK ⋅  is replaced with a vector of the internal forces nF  in 

order to simplify calculations [8]: 
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Where LB  is a matrix such that uBε L=  and ε  is Green – Lagrange strain, Ŝ  is a 

vector corresponding the 2nd Piola–Kirchhoff stress. This follows from the total  
Lagrangian formulation that relates the 2nd Piola–Kirchhoff stress to the Green–
Lagrange strain and where all variables of the element are referred to the initial confi-
guration [1].  

Displacements at the Δtn )1( +  moment are explicitly computed using formula 
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3 Degenerated Shell Element (Reissner-Mindlin Assumptions) 

Degenerated shell element also called basic shell model was developed from solid 
model in order to represent in-plane and bending behavior and corresponds to the 
plate element of the Reissner-Mindlin mathematical model [3, 4]. Basic shell element 
is developed with the plane stress assumption 033 =σ  which is a contradiction to a 

consequence of the Reissner-Mindlin kinematic assumption that the strain component 
033 =e . These assumptions are substantiated by considering kinematical assumptions 

with additional thickness variable at each node for the higher order elements [4]. 
 Any shell element is defined by material properties, nodal point coordinates, shell 

mid-surface normal and shell thickness at each mid-surface node. For convenience 
this relation can be written in respect to midsurface coordinates and a vector connect-
ing upper and lower points:  
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Where ),( ηξkN  is a shape function of the kth node and ζ  is a linear coordinate in 

the thickness direction, kh  is thickness of the shell at the kth node and v  is a unit 

vector in the direction normal to the mid-surface [13]. The displacements at each node 
of the degenerated shell are uniquely defined by three components of the mid-surface 
node displacement and two rotations about orthogonal directions normal to v . To 
simplify equations, additional degree of freedom (rotation about z axis) is included 
and constrained [2].  

4 Element Connections 

The flat structure is assembled of the 4-node degenerated shell elements. Each node 
belongs to one shell element but the initial coordinates are identical for the nodes 
which connect two or four neighboring elements, e.g. in Fig. 1 the initial coordinates 
of nodes 6, 7, 10, 11 (connecting 4 elements) are identical. Moreover, each connec-
tion has an indication which describes the direction the elements are connected, e.g. 
the connection 5-9 has indication 1 which means that elements are connected in the 
fiber direction of the unidirectional composite and connection 2-3 has indication 2 
which means that elements are connected in the transverse direction. 

 

Fig. 1. Element connections and node numbering 

Element connections are constrained using Master-Slave or penalty methods. Both 
methods are described in [6] as methods used for multifreedom constraints. The main 
idea of both methods is to modify stiffness equations by applying constraints.  
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4.1 Master – Slave Method 

As mentioned above, there are nodes that have identical initial coordinates. One node 
of this group is chosen as a master node (typically, the one with highest global  
number) and the other nodes are called slaves. The slave nodes are eliminated and 
modified equations are used to evaluate displacements at the master nodes. Due to 
simplicity, it is assumed that constraints are homogeneous, that is the displacements 
of the one master-slaves group are identical. 

The Master-Slave method is implemented by constructing transformation matrix 
T . First of all, all nodes are classified into independent nodes (nodes 1, 4, 13, 16 in 
Fig. 1), masters (nodes 3, 9, 11, 12, 15 in Fig. 1) and slaves (others). Matrix T is a 
sparse matrix which has mn ×  form, where n  is a number of degrees of freedom 
in the structure and m  is a number of degrees of freedom of the independent and 
master nodes. Each row in the matrix T  has only one element that is equal to 1 in 
the column that corresponds to: 

• the degrees of freedom of the independent node if the row corresponds the degrees 
of freedom of the independent node; 

• the degrees of freedom of the master node, if the row corresponds the degrees of 
freedom of the master node; 

• the degrees of freedom of the master node of the group with the slave node, if the 
row corresponds the degrees of freedom of the slave node. 

Matrix T has mn ×  form, where n  is a number of degrees of freedom in the 
structure and m  is a number of degrees of freedom of the independent and master 
nodes.  

Then displacements of all nodes u  are written in the matrix form: 

 uTu ˆ=  (5) 

Where û  is a displacement vector of the modified system which consists of the inde-
pendent and master nodes. All matrices and vectors in (3) are transformed by the rule:  

 MTTM T=ˆ , fTf T=ˆ  (6) 

Where vectors and matrices with circumflex accent define vectors and matrices of the 
modified system.  

If failure criteria in the specified direction is satisfied and connection between ele-
ments is deleted, nodes are re-classified and matrix T  is re-arranged.  

4.2 Penalty Function Method 

The degenerated shell elements in Fig. 1 are connected at two nodes (ith and jth) by 
fictitious bar elements called penalty elements. There are 6 degrees of freedom at 
each node. The length of bar is zero at the initial moment and the axial stiffness of the 
element is ω  and called penalty weight. The stiffness equations for the penalty ele-
ment are: 
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Then the additional equations of penalty elements are added to the initial system of 
equations. This method is direct (all displacements are computed at once) and no node 
reduction is used. 

However, the basic problem of the method is the penalty weight selection. To 
maintain the integrity of the structure, we choose the penalty weight equal to Young’s 
modulus in x or y direction respectively to the indication of the degree of freedom.  

If failure criteria in the specified direction is satisfied, the penalty weight is 
changed. In the simplest case, the penalty weight becomes zero. However, more natu-
ral case is not considered in this paper when penalty weight decreases if length of the 
penalty element increases.  

5 Failure Criteria 

General formulation of failure criteria used to evaluate loads that cause failure of the 
individual layer of the unidirectional composite is described in [10]. If layer is mod-
eled with the shell elements, it is enough to know stresses in principal material direc-
tions. Then failure criteria is described specifying the combination of stresses that 
cause fracture:  

 1),,( 1221 =τσσF  (8) 

1σ , 2σ  stresses in principal directions and 12τ  is shear stress. This means that ele-

ments work without failure if 1<F , fails if 1=F and is deleted if 1>F . 
In this article, Hashin failure criteria is employed [12]: 

• Tensile fiber mode ( 01 ≥σ ): 
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• Compressive fiber mode ( 01 <σ ): 
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• Tensile matrix mode ( 02 ≥σ ): 
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• Compressive matrix mode ( 02 <σ ): 
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Where tX  and cX  are respectively longitudinal tension and compression strengths,  

tY  and cY are respectively transverse tension and compression strengths and S  is 

shear strength.  
Failure criteria is evaluated at the node with stresses equal to the average of the 

stresses of the connecting nodes. Penalty element with indication 1 is deleted if crite-
ria in fiber tensile or compressive mode is satisfied and penalty element with indica-
tion 2 is deleted if criteria in matrix tensile or compressive mode is satisfied.  

6 Numerical Examples 

6.1 Longitudinal Load (Fiber Direction) 

The material of the model is orthotropic and the structure is assumed as unidirectional 
fiber composite where fibers lie along the x axis. Material properties are defined by 
the parameters listed in Table 1.  

Table 1. Material parameters of the degenerated shell model 

Young‘s modulus, 
xE  29 /103.44 mN⋅  

Young‘s modulus, 
yE  29 /104.14 mN⋅  

Poisson‘s ratio, 
xyv  32.0  

Shear modulus, 
xyG  29 /1043.4 mN⋅  

Shear modulus, 
yzG  29 /1005.4 mN⋅  

Shear modulus, 
zxG  29 /1094.4 mN⋅  

Density, ρ  3/7.1432 mkg
 

Penalty weight ω  changes in steps and is equal to w  - arbitrary value equal to 
Young’s modulus in x or y direction respectively to the indicator of the degree of 
freedom if failure criteria 1<=F .  
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=
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The flat structure in Fig. 2 is analyzed with linear loads in the x direction. Nodes that 
lie on the x axis are constrained in the y direction and rotation about the x axis and 
nodes that lie on the y axis are constrained in the x direction and rotation about the y 
axis. These constraints are employed in order to simulate only a quarter of the struc-
ture and maintain the symmetry of a structure. 
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Fig. 2. Shell model used for damage simulation and loads along the x axis 

Displacements of the node group N2 (Fig. 3) are compared below. The node group 
N2 corresponds to nodes 8, 12 in Fig. 1 that are labeled N21, N22. Due to the kinemat-
ic effects, failure criteria is satisfied for the first row of fictitious elements in the load 
direction as displayed in Fig. 3. As mentioned above, if failure criteria in tensile fiber 
mode is satisfied, connection of the elements is deleted and group N2 is disjointed to 
the nodes N21 and N22. 

 
Fig. 3. Damaged structure at the final moment (Displacements multiplied by 10) 

The x-displacements at the nodes N21 and N22 evaluated by different methods are 
displayed in Fig. 4. The difference between x-displacements is insignificant and appears 
because of computational errors. X-Displacements at both nodes are equal for Master-
Slave method or differ minutely for penalty method if failure criteria is not satisfied as 
displayed in Fig. 5. After failure criteria is satisfied, x-displacements at the nodes differ 
significantly. This is caused by increasing linear load on the edge of the structure. 
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Fig. 4. X-Displacements of the N21 and N22 evaluated by Master-Slave (left) and penalty 
(right) methods 

 
Fig. 5. Difference between displacements at the nodes N21 and N22 in the x direction 

6.2 Transverse Load 

The structure from the previous section is analyzed with linear load of the same magni-
tude in the transverse direction. Displacements of the node group N1 are compared 
below. Node group N1 corresponds to nodes 14, 15 in Fig. 1 and are labeled N11, N12. 

 

Fig. 6. Shell model used for damage simulation and loads along the y axis 
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Due to kinematic effects, failure criteria is satisfied for the first row of fictitious 
elements in the load direction as shown in Fig. 6. If failure criteria in tensile matrix 
mode is satisfied, connection with indication 2 is deleted and group N1 is disjointed to 
the nodes N11 and N12 (Fig. 7). 

 

Fig. 7. Damaged structure at the final moment (Displacements multiplied by 10) 

As in the previous section, displacements in the load direction (y) of the nodes N11 
and N12 evaluated by Master-Slave and penalty methods displayed in Fig. 8 differ 
insignificantly and differences appear due to the computational errors.  

 

Fig. 8. Y-Displacements of the N1 group evaluated by Master-Slave (left) and penalty (right) 
methods 

Difference between displacements between the nodes N11 and N12 also referred as 
a length of penalty element is zero for Master-Slave method and is small compared 
with shell element length for penalty method if failure criteria is not satisfied. Like in 
the previous section, the difference between nodes evolves after failure criteria is 
satisfied. This is caused by increasing linear load on the edge of the structure.  
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Fig. 9. Difference between displacements at the nodes N11 and N12 in the y direction 

7 Conclusions 

The failure of the flat structure assembled of the degenerated shell elements simulated 
by Master-Slave and Penalty methods is discussed in this paper. The orthotropic ma-
terial was used for simulation and penalty weights were selected with respect to ma-
terial parameters. As expected, for the loads of the same magnitude, structure fails for 
longitudinal load approximately 3 times faster than for the transverse load because of 
the orthotropicity of the material.  

The obvious advantage of penalty method is a simple implementation. Contrary to 
the penalty function method, assembling of transformation matrix used in Master-
Slave method is rather complex because of the master node selection and rearranging 
equations if the connection between the elements is deleted. The main advantage of 
the Master-Slave method is that it reduces the number of unknowns and is similar to 
the usual assembly process used in FEM. Moreover, all parameters in the Master-
Slave method are determined contrary to the penalty method where the main problem 
is penalty weight selection. The results of the both methods show decent agreement 
for the considered examples.  
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